Chapter 3: Processes

Operating System Concepts Essentials — 8t Edition Silberschatz, Galvin and Gagne ©2011

Chapter 3: Processes

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication
Examples of IPC Systems

Communication in Client-Server Systems

Operating System Concepts Essentials — 8t Edition

3.2

*ﬁ(l Ain\" h"

Silberschatz, Galvin and Gagne ©2011

ODbjectives

® To introduce the notion of a process -- a program in execution, which forms the basis of all
computation

m To describe the various features of processes, including scheduling, creation and termination,
and communication

® To describe communication in client-server systems

Operating System Concepts Essentials — 8t Edition 3.3 Silberschatz, Galvin and Gagne ©2011

%e
7,

r Process Concept

B An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks

m Textbook uses the terms job and process almost interchangeably
® Process — a program in execution; process execution must progress in sequential fashion
® A process includes:

e program counter

e stack
e (data section

Operating System Concepts Essentials — 8t Edition 3.4 Silberschatz, Galvin and Gagne ©2011

A
),

® Multiple parts

e The program code, also called text section

e Current activity including program counter, processor registers

e Stack containing temporary data

» Function parameters, return addresses, local variables

e Data section containing global variables

e Heap containing memory dynamically allocated during run time
®m Program is passive entity, process is active

e Program becomes process when executable file loaded into memory
m Execution of program started via GUI mouse clicks, command line entry of its name, etc
®m One program can be several processes

e Consider multiple users executing the same program

Operating System Concepts Essentials — 8t Edition 3.5 Silberschatz, Galvin and Gagne ©2011

2 Process in Memory

max
stack

heap

data

text

> . }\\3)
/4 <
« ﬁ\ 2
Operating System Concepts Essentials — 8t Edition 3.6 Silberschatz, Galvin and Gagne ©2011

Process State

B As a process executes, it changes state

new: The process is being created

running: Instructions are being executed

waiting: The process is waiting for some event to occur
ready: The process is waiting to be assigned to a processor
terminated: The process has finished execution

Operating System Concepts Essentials — 8t Edition 3.7

Silberschatz, Galvin and Gagne ©2011

Diagram of Process State

o admitted interrupt exit

scheduler dispatch

I/O or event completion I/O or event wait

Operating System Concepts Essentials — 8t Edition 3.8 Silberschatz, Galvin and Gagne ©2011

Process Control Block (PCB)

Information associated with each process
Process state

Program counter

CPU registers

CPU scheduling information
Memory-management information
Accounting information

I/O status information

Operating System Concepts Essentials — 8t Edition 3.9 Silberschatz, Galvin and Gagne ©2011

f{?
7,

/‘ Af"’wj-
~5 Process Control Block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

Operating System Concepts Essentials — 8t Edition 3.10 Silberschatz, Galvin and Gagne ©2011

=

=»77 CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing / l

h save state into PCB,

~ idle

reload state from PCB, J

> idle interrupt or system call executing

| T

save state into PCB,

. - idle

) reload state from PCB, p

executing \

Operating System Concepts Essentials — 8t Edition 3.11 Silberschatz, Galvin and Gagne ©2011

A
),

i Process Scheduling

B Maximize CPU use, quickly switch processes onto CPU for time sharing
m Process scheduler selects among available processes for next execution on CPU
B Maintains scheduling queues of processes

e Job queue — set of all processes in the system

e Ready queue — set of all processes residing in main memory, ready and waiting to
execute

e Device queues — set of processes waiting for an I/O device
e Processes migrate among the various queues

Operating System Concepts Essentials — 8t Edition 3.12 Silberschatz, Galvin and Gagne ©2011

“»”7 Process Representation in Linux

m Represented by the C structure task struct

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process s parent */
struct list head children; /* this process’ s children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this pro */

sinuct tass_=truct siruct task_=buct gtnuct task_siruct
PrisCeEs imlarmaton prisCeEs inhormation - pProcassE irdommEisn
- - o
- - o
- - .
cirrent

[cummantly axaculing proccess)

*ﬁ(l Ain\" h"

Operating System Concepts Essentials — 8t Edition 3.13 Silberschatz, Galvin and Gagne ©2011

Ready Queue And Various
K /O Device Queues

queue header PCB, PCB,
ready head >
queue tail N registers registers
L J L)
L] L]
s / °
mag head - —
tape - -
unit O tail i =
{nag head —+—=
ape
uni'?1 tail i : PCB, PCB,, PCBg
—_—
disk head 4
unit O tail .\
PCBs
terminal head —T—> —=
unit O tail g
L J
® < \
) AN
L B
Operating System Concepts Essentials — 8t Edition 3.14 Silberschatz, Galvin and Gagne ©2011

~“$»” Representation of Process Scheduling

: ready queue -@) g

/O /O queue «— |/O request |[&—
time slice E
expired
child fork a
Interrupt wait for an E
occurs interrupt

Operating System Concepts Essentials — 8t Edition 3.15 Silberschatz, Galvin and Gagne ©2011

Schedulers

®m Long-term scheduler (or job scheduler) — selects which processes should be brought into the
ready queue

m Short-term scheduler (or CPU scheduler) — selects which process should be executed next and
allocates CPU

e Sometimes the only scheduler in a system

Operating System Concepts Essentials — 8t Edition 3.16 Silberschatz, Galvin and Gagne ©2011

P
i Schedulers (Cont.)

m Short-term scheduler is invoked very frequently (milliseconds) = (must be fast)
® Long-term scheduler is invoked very infrequently (seconds, minutes) = (may be slow)
®m The long-term scheduler controls the degree of multiprogramming

B Processes can be described as either:
e |/O-bound process — spends more time doing I/O than computations, many short CPU bursts
e CPU-bound process — spends more time doing computations; few very long CPU bursts

Operating System Concepts Essentials — 8t Edition 3.17 Silberschatz, Galvin and Gagne ©2011

~$¥7 Addition of Medium Term Scheduling

swap in

partially executed

swapped-out processes

swap out

YYyY

ready queue

-@}_ » end

/0O

Operating System Concepts Essentials — 8t Edition

I/O waiting
queues

3.18

Silberschatz, Galvin and Gagne ©2011

el Context Switch

®m When CPU switches to another process, the system must save the state of the old process and load
the saved state for the new process via a context switch.

m Context of a process represented in the PCB

m Context-switch time is overhead; the system does no useful work while switching
e The more complex the OS and the PCB -> longer the context switch

B Time dependent on hardware support
e Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at once

Operating System Concepts Essentials — 8t Edition 3.19 Silberschatz, Galvin and Gagne ©2011

/‘ Af"’wj- .
7 Process Creation

m Parent process create children processes, which, in turn create other processes, forming a tree of
processes

B Generally, process identified and managed via a process identifier (pid)

B Resource sharing
e Parent and children share all resources
e Children share subset of parent’ s resources
e Parent and child share no resources

® Execution
e Parent and children execute concurrently
e Parent waits until children terminate

Operating System Concepts Essentials — 8t Edition 3.20 Silberschatz, Galvin and Gagne ©2011

Process Creation (Cont.)

m Address space
e Child duplicate of parent
e Child has a program loaded into it

m UNIX examples
e fork system call creates new process
e exec system call used after a fork to replace the process’ memory space with a new program

Operating System Concepts Essentials — 8t Edition 3.21 Silberschatz, Galvin and Gagne ©2011

P Process Creation

parent resumes

walit >

child—>{ exec() »

> . }\\3)
/ <

« ﬁ\ A

Operating System Concepts Essentials — 8t Edition 3.22 Silberschatz, Galvin and Gagne ©2011

-

- f;‘i‘?”"‘j

‘*“%*” C Program Forking Separate Process

#include <sys/types.h>
#include <studio.h>
#include <unistd.h>
iInt main()
{
pid_t pid;
[* fork another process */
pid = fork();
If (pid < 0) { /* error occurred */
fprintf(stderr, "Fork Failed");
return 1;

}

else if (pid == 0) { /* child process */
execlp("/bin/ls", "Is", NULL);

}

else { /* parent process */
[* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

}

return O;

Operating System Concepts Essentials — 8}1“ Edition 3.23 Silberschatz, Galvin and Gagne ©2011

A Tree of Processes on Solaris

Sched
pid =0

pageout
pid =2

inetd dtlogin
pid = 140 pid = 251

telnetdaemon X_session
pid =7776 pid = 294
sdt_shel
pid = 340

Csh

Csh
pid = 7778
pid = 1400

Netscape l emacs
pid = 7785 pid = 8105
cat
pid = 2536

Operating System Concepts Essentials — 8t Edition 3.24 Silberschatz, Galvin and Gagne ©2011

<
=~

‘nw/ Process Termination

B Process executes last statement and asks the operating system to delete it (exit)
e Output data from child to parent (via wait)
e Process’ resources are deallocated by operating system

m Parent may terminate execution of children processes (abort)
e Child has exceeded allocated resources
e Task assigned to child is no longer required
e If parent is exiting
» Some operating system do not allow child to continue if its parent terminates
All children terminated - cascading termination

Operating System Concepts Essentials — 8t Edition 3.25 Silberschatz, Galvin and Gagne ©2011

o o Interprocess Communication

m Processes within a system may be independent or cooperating
B Cooperating process can affect or be affected by other processes, including sharing data
® Reasons for cooperating processes:

e Information sharing

e Computation speedup

e Modularity

e Convenience
m Cooperating processes need interprocess communication (IPC)
®m Two models of IPC

e Shared memory

e Message passing

Operating System Concepts Essentials — 8t Edition 3.26 Silberschatz, Galvin and Gagne ©2011

e Communications Models

process A M process A
o
shared .
2
process B M process B d
1
kernel M kernel
(a) (b)
3.27 Silberschatz, Galvin and Gagne ©2011

Operating System Concepts Essentials — 8t Edition

Cooperating Processes

B Independent process cannot affect or be affected by the execution of another process

m Cooperating process can affect or be affected by the execution of another process

®m Advantages of process cooperation

Information sharing
Computation speed-up
Modularity
Convenience

Operating System Concepts Essentials — 8t Edition

3.28

Silberschatz,

Galvin and Gagne ©2011

7 Producer-Consumer Problem

m Paradigm for cooperating processes, producer process produces information that is
consumed by a consumer process

e unbounded-buffer places no practical limit on the size of the buffer
e bounded-buffer assumes that there is a fixed buffer size

Operating System Concepts Essentials — 8t Edition 3.29 Silberschatz, Galvin and Gagne ©2011

P Bounded-Buffer —
wr ol Shared-Memory Solution

B Shared data

#define BUFFER_SIZE 10
typedef struct {

} item;

item buffer[BUFFER_SIZE];
Intin = 0;

Int out = O;

m Solution is correct, but can only use BUFFER_SIZE-1 elements

Operating System Concepts Essentials — 8t Edition 3.30 Silberschatz, Galvin and Gagne ©2011

7 Bounded-Buffer — Producer

while (true) {
[* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count) == out)
, [* do nothing -- no free buffers */

buffer[in] = item,;

in =(in + 1) % BUFFER SIZE;

Operating System Concepts Essentials — 8t Edition 3.31 Silberschatz, Galvin and Gagne ©2011

“#»7/ Bounded Buffer — Consumer

while (true) {
while (in == out)
, /I do nothing -- nothing to consume

/[remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER SIZE;
return item;

}

Operating System Concepts Essentials — 8t Edition 3.32 Silberschatz, Galvin and Gagne ©2011

Y Interprocess Communication —
< Message Passing

Mechanism for processes to communicate and to synchronize their actions

B Message system — processes communicate with each other without resorting to shared variables
m |PC facility provides two operations:

e send(message) — message size fixed or variable

e receive(message)
m |f P and Q wish to communicate, they need to:

e establish a communication link between them

e exchange messages via send/receive
® Implementation of communication link

e physical (e.g., shared memory, hardware bus)

e logical (e.g., logical properties)

Operating System Concepts Essentials — 8t Edition 3.33 Silberschatz, Galvin and Gagne ©2011

! Implementation Questions

How are links established?

Can a link be associated with more than two processes?

How many links can there be between every pair of communicating processes?
What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or variable?

Is a link unidirectional or bi-directional?

S
"',“ \33“
A 29K

Operating System Concepts Essentials — 8t Edition 3.34 Silberschatz, Galvin and Gagne ©2011

o Direct Communication

B Processes must name each other explicitly:
e send (P, message) — send a message to process P
e receive(Q, message) — receive a message from process Q

® Properties of communication link
e Links are established automatically
e Alinkis associated with exactly one pair of communicating processes
e Between each pair there exists exactly one link
e The link may be unidirectional, but is usually bi-directional

Operating System Concepts Essentials — 8t Edition 3.35 Silberschatz, Galvin and Gagne ©2011

4 Indirect Communication

®m Messages are directed and received from mailboxes (also referred to as ports)
e Each mailbox has a unique id
e Processes can communicate only if they share a mailbox

m Properties of communication link
e Link established only if processes share a common mailbox
e Alink may be associated with many processes
e Each pair of processes may share several communication links
e Link may be unidirectional or bi-directional

Operating System Concepts Essentials — 8t Edition 3.36 Silberschatz, Galvin and Gagne ©2011

wr & Indirect Communication

m QOperations
e create a new mailbox
e send and receive messages through mailbox
e destroy a mailbox

® Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts Essentials — 8t Edition 3.37 Silberschatz, Galvin and Gagne ©2011

=<5 Indirect Communication

® Mailbox sharing
e P, P,, and P; share mailbox A
e Py, sends; P, and P, receive
e Who gets the message?

m Solutions
e Allow a link to be associated with at most two processes
e Allow only one process at a time to execute a receive operation
e Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Sk N
'7"‘, \‘}\“
“« 29K

Operating System Concepts Essentials — 8t Edition 3.38 Silberschatz, Galvin and Gagne ©2011

A
),

r Synchronization

®m Message passing may be either blocking or non-blocking

®m Blocking is considered synchronous
e Blocking send has the sender block until the message is received
e Blocking receive has the receiver block until a message is available

®m Non-blocking is considered asynchronous
e Non-blocking send has the sender send the message and continue
e Non-blocking receive has the receiver receive a valid message or null

Operating System Concepts Essentials — 8t Edition 3.39 Silberschatz, Galvin and Gagne ©2011

.-*.‘fm'& .
55 Buffering

B Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

S e
"',“ \33“
“« 29K

Operating System Concepts Essentials — 8t Edition 3.40 Silberschatz, Galvin and Gagne ©2011

~$»/ Examples of IPC Systems - POSIX

m POSIX Shared Memory
e Process first creates shared memory segment
segment id = shmget (IPC PRIVATE, size, S IRUSR | S IWUSR);
e Process wanting access to that shared memory must attach to it
shared memory = (char *) shmat(id, NULL, O0);
e Now the process could write to the shared memory
sprintf (shared memory, "Writing to shared memory");
e When done a process can detach the shared memory from its address space

shmdt (shared memory) ;

Operating System Concepts Essentials — 8t Edition 3.41 Silberschatz, Galvin and Gagne ©2011

5% Examples of IPC Systems - Mach

®m Mach communication is message based
e Even system calls are messages
e Each task gets two mailboxes at creation- Kernel and Notify
e Only three system calls needed for message transfer
msg_send(), msg recelve(), msg rpc()
e Mailboxes needed for commuication, created via
port allocate()

Operating System Concepts Essentials — 8t Edition 3.42 Silberschatz, Galvin and Gagne ©2011

<
=~

v
g“//r\ o) "
“»”" Examples of IPC Systems — Windows XP

m Message-passing centric via local procedure call (LPC) facility
e Only works between processes on the same system
e Uses ports (like mailboxes) to establish and maintain communication channels
e Communication works as follows:
» The client opens a handle to the subsystem’ s connection port object.
» The client sends a connection request.

» The server creates two private communication ports and returns the handle to one of them to
the client.

» The client and server use the corresponding port handle to send messages or callbacks and
to listen for replies.

Operating System Concepts Essentials — 8t Edition 3.43 Silberschatz, Galvin and Gagne ©2011

(R

{‘&I—" \&‘s

“»”7 Local Procedure Calls iIn Windows XP

Server

Client
Connection
request Connection Handle
Port
Handle Client
Communication Port
Server Handle

Communication Port

Operating System Concepts Essentials — 8t Edition

.

Shared
Section Object
(< = 256 bytes)

-

3.44

Silberschatz,

Galvin and Gagne ©2011

77 Communications in Client-Server Systems

B Sockets

B Remote Procedure Calls

m Pipes

B Remote Method Invocation (Java)

St
/4 <
AU m”

Operating System Concepts Essentials — 8t Edition 3.45 Silberschatz, Galvin and Gagne ©2011

Sockets

m A socketis defined as an endpoint for communication

m Concatenation of IP address and port

m The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

m Communication consists between a pair of sockets

Operating System Concepts Essentials — 8t Edition 3.46 Silberschatz, Galvin and Gagne ©2011

Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(161.25.19.8:80)

Operating System Concepts Essentials — 8t Edition 3.47 Silberschatz, Galvin and Gagne ©2011

w. o Remote Procedure Calls

®m Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

B Stubs - client-side proxy for the actual procedure on the server

m The client-side stub locates the server and marshalls the parameters

m The server-side stub receives this message, unpacks the marshalled parameters, and performs the
procedure on the server

Operating System Concepts Essentials — 8t Edition 3.48 Silberschatz, Galvin and Gagne ©2011

Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

messages

From: client
To: server

kernel places
port P in user
RPC message

server

matchmaker
receives

Port: matchmaker
Re: address
for RPC X

i

From: server
To: client

kernel sends
RPC

A 4

message, looks
up answer

|

matchmaker

Port: kernel
Re: RPC X
Port: P

From: client
To: server

kernel receives
reply, passes
it to user

-

replies to client
with port P

daemon
listening to

Port: port P
<contents>

From: RPC
Port: P

Operating System Concepts Essentials — 8t Edition

Y

port P receives
message

h 4

daemon
processes

To: client
Port: kernel
<output>

3.49

request and
processes send
output

Silberschatz, Galvin and Gagne ©2011

V%\p—/ P PES

® Acts as a conduit allowing two processes to communicate

m |ssues
e Is communication unidirectional or bidirectional?
e In the case of two-way communication, is it half or full-duplex?
e Must there exist a relationship (i.e. parent-child) between the communicating processes?
e Can the pipes be used over a network?

Operating System Concepts Essentials — 8t Edition 3.50 Silberschatz, Galvin and Gagne ©2011

%e
7,

57 Ordinary Pipes

®m Ordinary Pipes allow communication in standard producer-consumer style
B Producer writes to one end (the write-end of the pipe)

m Consumer reads from the other end (the read-end of the pipe)

B Ordinary pipes are therefore unidirectional

® Require parent-child relationship between communicating processes

Operating System Concepts Essentials — 8t Edition 3.51 Silberschatz, Galvin and Gagne ©2011

Ordinary Pipes

parent child
fd(0) fd(1) fd(0) fd(1)

|
Q;J

Yy
T

Operating System Concepts Essentials — 8t Edition 3.52 Silberschatz, Galvin and Gagne ©2011

hg Named Pipes

®m Named Pipes are more powerful than ordinary pipes

®m Communication is bidirectional

® No parent-child relationship is necessary between the communicating processes
B Several processes can use the named pipe for communication

® Provided on both UNIX and Windows systems

Operating System Concepts Essentials — 8t Edition 3.53 Silberschatz, Galvin and Gagne ©2011

End of Chapter 3

Operating System Concepts Essentials — 8t Edition Silberschatz, Galvin and Gagne ©2011

