Informed/Heuristics search
algorithms

Material

Ch 3 of Artificial Intelligence A Systems
Approach by Tim Jones

Chapter 4 of Artificial Intelligence a
Modern Approach by Russell and Norvig

Informed Search Techniques

- Blind search is not always possible, because they require too much time
or Space (memory).

- Heuristics are rules of thumb; they do not guarantee for a solution to a
problem.

- Heuristic Search is a weak techniques but can be effective if applied

correctly; they require domain specific information

Characteristics of Hewristlc Search

¢ Heuristics, am= knowledge about comain, which help search and Heuristic Search compared with other search

reazoning In its domain. The Heuristic s=arch s comparsd with Brute force or Blind searnch

techniques

¢ Heuristic s=arch incorporates domain knowledge to improwve efficlency

over blind search. Compare Algorithms

Brute force § Blind search Heuristic search
¢ Heuristic is a function that, when appiied toa state; returns value as
= "
extimankes ot of sthle, with repect fo ool & Only have knowledge about & Estimates "distance" to gosl state
already explored nodes
® Heuristics might (for reasons) under estimate or over estimate the @ Mo knowledge sbout how far a € Guldes search process towend
meerit of a stake with respect to goal node is from goal state goal stabe

m Heuristics that under estimates are desimble and calisd somissibs QR S (nes) | (ak - el
close to end not away from goal
© Heuristic evaluation Function estimates lkelthood of given state state

leading to goal state.

¢ Hewristic search function estimates cost from current state to goal,
presuming function s effident.

Informed Search Techniques

£ Actlons
e Figure befow shows: three possible moves - left ; up, right
@& State space: Configuration of E- tiles on the board
112]3] Gom
& state Imitiad; any confsguration pecific arder 1213 Inltlal State
8 4 71814
[1]2]3] AL 51 3"
7]8]4] Left Wi W
- Right e
(6] |5] - i ~
112]3 112]3 11213
{ Soluton: optimal sequence of operators 718l a 78l 4 7]
¢ Action: “blank moves” 3 B 65 e|lB]5
- Condition: the move |s within the boand Count correct h=8& h=4a h=5
positians
- Directions: Left, Right, Up, Dn Find Which move Is best 7
& Problem & Apply the Heurlstic : Three different approaches

- which 8-puzzle move ks best?
- Count correct position of each tie, compare to goal stake

- what heuristic(s) can deckde?
- Count Incomrect position of esach tile, compare to goal state

- which move Is "best” (waorth considering first) 7
N = = Count how Ffar away each tile is from ik is comrect position.

Approaches L=t Faght up
1. Count cormect posdtion & 4 3
2. Count mcommect position 1 4 3

3. Count how far away

Each of these three approaches are explained below.

R T TP

Three different spproaches

st approach -
Count correct position of each tie, compare to goal state.
Higher the nember the better i s,

¥ Easy to compute (Fast and takes Wite memory).

£ Frobably the simplest possible heursstic,

2nd approach
Count incorrect position of sach Hie, compare to poal state
Lower the nismber the better it is.

£ The "best”™ mave |5 where lowest number retumed by heuristic.

3rd approach
Count how far pway each tle s from it's comect position
Count how far away [how many tile movements] each tie is from
It's cormect position.
¥ Sum up these count over all the ties.

The "best™ mave ks where |owest number returned by heuristic.

Heuristic Search Algorithms | types
& Generate-And-Test
% Hill dimbing " Shmpke

= Steepest-Ascent Hill climSing
= Simulated Anealing

4 Best First S=arch = OR Gragh
= A® [A-Star) Algorthm
= Agendas

¢ Problem Reductan = AND-OR_Graph

= AQ* (AD-Star) Algorithm
4 Constraint Satisfaction

& Mean-snd Analysis

Best-first search

method of exploring the node with the best “score” first

ldea: use an evaluation function f(n) for each node estimate of
"desirability"

- The node with the lowest evaluation is considered as best node and
selected for expansion

-> maintains two lists, one containing a list of candidates yet to explore
(OPEN), and one containing a list of visited nodes (CLOSED)

—> algorithm always chooses the best of all unvisited nodes that have been
graphed while other search strategies, such as depth-first and breadth-
first, have this restriction

Algorithm:

1. Define a list, OPEN, consisting solely of a single node, the start node, s.
2. IF the list is empty, return failure.
3. Remove from the list the node n with the best score (the node where f is the minimum), and move it to a list, CLOSED.
4. Expand node n.
5. IF any successor to n is the goal node, return success and the solution (by tracing the path from the goal node to s).
6. FOR each successor node:
a) apply the evaluation function, f, to the node.
b) IF the node has not been in either list, add it to OPEN.
7.looping structure by sending the algorithm back to the second step.

Special cases:
— greedy best-first search
— A" search

Romania with step costs in km

Ta

Arad

80

Rimnikcu ¥Wikcea

[] ¥Waslul

—] Hirsowa

Eforie

Straight-line distance

o Buchamst
Arad
Bucha rest
Crawovs
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ia=

Lugoj
MhMehadis
MNeamt
Orades
Pitesti
Rimnicu Vikea
Sibiu
Tim=oars
Urziceni
Vashn
Zerind

ks

0
Lad
42
lal
176

151
125
14
2141
13

1
193
153
329

19
EYE

Greedy best-first search

greedy best-first search uses only the heuristic,
and not any link costs to expand the node that
appears to be closest to goal

Evaluation function f(n) = h(n) (heuristic)
= estimate of cost from n to goal

disadvantage: if the heuristic is not accurate, it can go down

paths with high link cost since there might be a low heuristic for the
connecting node

e.g., hg p(n) = straight-line distance from n to
Bucharest

Greedy best-first search
example

Greedy best-first search
example

First, add the Start node to the fringe

Greedy best-first search
example

Visit the Start node and add its neighbors to the fringe

Greedy best-first search
example

Visit node A and add its neighbors to the fringe.

Greedy best-first search
example

node D has the lowest heuristic value, we visit at that node and add its
neighbors to the fringe

Greedy best-first search
example

node E has the lowest heuristic in the fringe, it is visited at and its neighbors are
added to the fringe.

Greedy best-first search
example

h=30
1

Goal is in the priority queue with a heuristic of O, it is visited and a path to
the goal is found.

The path found from Start to Goal is: Start -> A-> D -> E -> Goal. In this case, it
was the optimal path, but only because the heuristic values were fairly accurate

Greedy best first Search:
another illustration

3 o d) ——— ==l A\}__,{; Tﬁ\l
= 9 WL T
wﬁ - _h = .'/ K":.I H':_:‘} S ”11:4
ETART — - h | '-,_1
H,{l I I-_I_] __LJ h=6 5
h=] __-""-.

Properties of greedy best-first search

« Complete? No — can get stuck in loops,

 Time? O(b™), but a good heuristic can give
dramatic improvement though all nodes
are visited in the worst case

o Space? Also O(b™) -- keeps all nodes In

memory

* b is the average branching factor (the average number of
successors from a state), and m is the maximum depth
of the search tree

 Optimal? No

A’ search

ldea: avoid expanding paths that are
already expensive

Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

f(n) = estimated total cost of path through
n to goal

A" search example

366=0+368

A" search example

A’ search exam

e

e 447=118+329

G45=280+366 415=239+176 671=201+380 413=220+193

4489=T5+374

A’ search example

Amd
.‘-in;ig:\ala " -ﬂ p E.
447=118+329 449=75+374

G46=280+366 415=239+176 &71= 291-!-380

526=366+160 417=317+100 553=300+253

A’ search example

—

< Amd

=g

447=118+329 449=T5+374

(TR imisoara

.,
™,

Fagaras
G465=280+365 R 571=291+380 S

C Sbi; > @uc;halﬂg) D-CE‘EE.’D CSbu >

501=338+253 450=450-40 526=366+160 417=317+100 553=300+253

A’ search exam

—

CAmd

=g

H7=118+329

v imisoara

.,
™,

646=280+366 . - 671=231+380 e

591=338+253 450=450+0 526=366+180 | . 553=300+253

418=418+0 G15=455+160 GOT=414+183

€

4489=T5+374

Example: 8 Puzzle

7 2 4 l £
5 G 3 4 3
- = |
& 3] 6 f) o
Start State Cioal State

» What are the states?

» How many states?

» What are the actions?

» What states can | reach from the start state?
~ What should the costs be?

8 Puzzle |

» Number of tiles
misplaced?

» Why is it
admissible?

» h(start) = 8

» This is a relaxed-
problem heuristic

T 2

i

b 3
Sbart Sl

] 2

+ A

7 8
Cival State

Average nodes expanded when optimal
path has length...

...4 steps ... steps - 12 steps
1D 112 6,300 36x10°
_T[[__[-?5_ 13 39 227

8 Puzzle Il

» What if we had an
easier 8-puzzle where

any tile could slide any

direction at any time,
ignoring other tiles?

~ Total Manhattan
distance

» Why admissible?

7 2 3] 2

T T £ = 3

3 3 l [b 8
Start Stabe Cannal State

Average nodes expanded when optimal
path has length...

...4 sleps .8 sleps ... 12 steps
= h(start) =
I+l 42%... TILES 13 39 227
—~ 18 MAN- 12 25 73
HATTAN

8 Puzzle Il

-~ How about using the actual cost as a heuristic?
» Would it be admissible?
~ Would we save on nodes expanded?
» What's wrong with it?

-~ With A*: a trade-off between quality of estimate and
work per node!

Other A* Applications

Pathing / routing problems
Resource planning problems
Robot motion planning
_anguage analysis

Machine translation

Speech recognition

Admissible Heuristics

e A heuristic h is admissible (optimistic) if:
h(n) < h*(n)
« where /*(n) the true cost to a nearest goal

Admissible heuristics

A heuristic h(n) is admissible if for every node n,

h(n) < h*(n), where h*(n) is the true cost to reach the goal state from
n.

E.g. Euclidean distance on a map problem

An admissible heuristic never overestimates the cost to reach the
goal, i.e., It is optimistic

Coming up with admissible heuristics is most of what's involved in u
sing A* in practice.

Inadmissible heuristics are often quite effective (especially when you
have no choice)

Theorem: If h(n) is admissible, A" using TREE-SEARCH is optimal

Properties of A*

Complete? Yes (unless there are infinitely
many nodes with f < f(G))

Time? Exponential

Space? Keeps all nodes iIn memory

Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

e hy(n) = number of misplaced tiles

* hy(n) = total Manhattan dlstance

(i.e., no. of squares from desire

4

7 2
5
8 3

7

Start State

Goal State

Admissible heuristics

E.g., for the 8-puzzle:

. 1(n) = number of misplaced tiles
e h,(n) = total Manhattan dlstance

(i.e., no. of squares from desire ' '
7 2 4 1
5 6 3 4
8 3 1 6 7
Start State Goal State

° hl(s) =78
* hy(S) =7 3+1+2+2+2+3+3+2 = 18

Relaxed problems

A problem with fewer restrictions on the actions
IS called a relaxed problem

The cost of an optimal solution to a relaxed
problem is an admissible heuristic for the
original problem

If the rules of the 8-puzzle are relaxed so that a
tile can move anywhere, then h,(n) gives the
shortest solution

If the rules are relaxed so that a tile can move to
any adjacent square, then h,(n) gives the
shortest solution

Local search algorithms

In many optimization problems, the path to the
goal Is irrelevant; the goal state itself is the
solution

State space = set of "complete"” configurations

Find configuration satisfying constraints, e.g., n-
gueens

In such cases, we can use local search
algorithms

keep a single "current"” state, try to improve it

Example: N-Queens using Hill climbing
algorithm

Example: n-queens

 Put n queens on an n x n board with no
two queens on the same row, column, or
diagonal

W W W W I
W
5= Ao

Hill-climbing search

 "Like climbing Everest In thick fog with
amnesia”

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current+— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor +— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current <— neighbor

Hill-climbing search

iterative algorithm that starts with an arbitrary solution to a problem, then attempts
to find a better solution by incrementally changing a single element of the solution. If
the change produces a better solution, an incremental change is made to the new
solution, repeating until no further improvements can be found.
Simple, general idea:

— Start wherever

— Always choose the best neighbor

— If no neighbors have better scores than current, quit
Problem: depending on initial state, can get stuck in local maxima

nbj:cti'.'ifun:tinn

global maximmm

e

shonlder

N

local maximmim

e

"flat" local maximmm

m-cints Epaces
cument
stabe

Hill climbing

Application in the traveling salesman problem:

 |tis easy to find an initial solution that visits all the cities but will be very poor
compared to the optimal solution. The algorithm starts with such a solution and
makes small improvements to it, such as switching the order in which two cities
are visited. Eventually, a much shorter route is likely to be obtained.

good for finding a local optimum (a good solution that lies relatively
near the initial solution)

Not guaranteed to find the best possible solution (the global optimum)
out of all possible solutions (the search space).

Its relative simplicity makes it a popular first choice amongst
optimizing algorithms
more advanced algorithms such as simulated annealing or tabu

search may give better results, in some situations hill climbing works
just as well

can often produce a better result than other algorithms when time is
limited

Hill-climbing search: 8-queens problem

13.14 13.14
16 15.14.15
14.13 15.14

14 w 16 16
w 17 w 16
W8] 1o (8T W (11 W
18 ‘w 15 ‘ﬂ'
14 17 . 14 . 18

h = number of pairs of queens that are attacking each other, either directly
or indirectly

h = 17 for the above state

Hill-climbing search: 8-queens problem

e Alocal minimumwithh=1

Simulated annealing search

* |dea: escape local maxima by allowing some
"bad" moves but gradually decrease their

frequency

¢ function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
nexl, a node
T, a “temperature” controlling prob. of downward steps

current <~ MAKE-NODE(INITIAL-STATE[problem])

for t+— 1to oc do
T+ schedule[{]
if 7= 0 then return current
nexl+— a randomly selected successor of current
AFE + VALUE[next] — VALUE[current]
if AE > 0 then current « next

else current + next only with probability e® #/T

Properties of simulated
annealing search

 One can prove: If T decreases slowly enough,
then simulated annealing search will find a
global optimum with probability approaching

 Widely used in VLSI layout, airline scheduling,
etc

Tabu search

* A metaheuristic algorithm that can be used for solving
combinatorial optimization problems, such as the
traveling salesman problem (TSP). Tabu search uses a
local or neighborhood search procedure to iteratively
move from a solution x to a solution X' in the
neighborhood of X, until some stopping criterion has
been satisfied. To explore regions of the search space
that would be left unexplored by the local search
procedure

« Tabu search modifies the neighborhood structure of
each solution as the search progresses

 Example: Traveling salesman problem

