
Informed/Heuristics search 
algorithms



Material

• Ch 3 of Artificial Intelligence A Systems 
Approach by Tim Jones
Chapter 4 of Artificial Intelligence a 
Modern Approach by Russell and Norvig



Informed Search Techniques



Informed Search Techniques





Best-first search
• method of exploring the node with the best “score” first
• Idea: use an evaluation function f(n) for each node estimate of 

"desirability"
 The node with the lowest evaluation is considered as best node and 

selected for expansion 
 maintains two lists, one containing a list of candidates yet to explore 

(OPEN), and one containing a list of visited nodes (CLOSED)
 algorithm always chooses the best of all unvisited nodes that have been 

graphed while other search strategies, such as depth-first and breadth-
first, have this restriction

Algorithm:
1. Define a list, OPEN, consisting solely of a single node, the start node, s.
2. IF the list is empty, return failure.
3. Remove from the list the node n with the best score (the node where f is the minimum), and move it to a list, CLOSED.
4. Expand node n.
5. IF any successor to n is the goal node, return success and the solution (by tracing the path from the goal node to s).
6. FOR each successor node:

a) apply the evaluation function, f, to the node.
b) IF the node has not been in either list, add it to OPEN.

7.looping structure by sending the algorithm back to the second step.

• Special cases:
– greedy best-first search
– A* search



Romania with step costs in km



Greedy best-first search
• greedy best-first search uses only the heuristic, 

and not any link costs to expand the node that 
appears to be closest to goal

• Evaluation function f(n) = h(n) (heuristic)
• = estimate of cost from n to goal
• disadvantage: if the heuristic is not accurate, it can go down 

paths with high link cost since there might be a low heuristic for the 
connecting node

• e.g., hSLD(n) = straight-line distance from n to 
Bucharest



Greedy best-first search 
example



Greedy best-first search 
example

First, add the Start node to the fringe



Greedy best-first search 
example

Visit the Start node and add its neighbors to the fringe



Greedy best-first search 
example

Visit node A and add its neighbors to the fringe.



Greedy best-first search 
example

node D has the lowest heuristic value, we visit at that node and add its 
neighbors to the fringe



Greedy best-first search 
example

node E has the lowest heuristic in the fringe, it is visited at and its neighbors are 
added to the fringe.



Greedy best-first search 
example

Goal is in the priority queue with a heuristic of 0, it is visited and a path to 
the goal is found.
The path found from Start to Goal is: Start -> A -> D -> E -> Goal. In this case, it 
was the optimal path, but only because the heuristic values were fairly accurate



Greedy best first Search: 
another illustration



Properties of greedy best-first search

• Complete? No – can get stuck in loops, 
• Time? O(bm), but a good heuristic can give 

dramatic improvement though all nodes 
are visited in the worst case

• Space? Also O(bm) -- keeps all nodes in 
memory

• b is the average branching factor (the average number of 
successors from a state), and m is the maximum depth 
of the search tree

• Optimal? No



A* search

• Idea: avoid expanding paths that are 
already expensive

•
• Evaluation function f(n) = g(n) + h(n)
•
• g(n) = cost so far to reach n
• h(n) = estimated cost from n to goal
• f(n) = estimated total cost of path through 

n to goal
•



A* search example



A* search example



A* search example



A* search example



A* search example



A* search example











Other A* Applications
• Pathing / routing problems
• Resource planning problems
• Robot motion planning
• Language analysis
• Machine translation
• Speech recognition



Admissible Heuristics
• A heuristic h is admissible (optimistic) if:

• where is the true cost to a nearest goal



Admissible heuristics
• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from 
n.

• E.g. Euclidean distance on a map problem
• An admissible heuristic never overestimates the cost to reach the 

goal, i.e., it is optimistic
• Coming up with admissible heuristics is most of what’s involved in u

sing A* in practice.
• Inadmissible heuristics are often quite effective (especially when you

have no choice)
• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal



Properties of A*

• Complete? Yes (unless there are infinitely 
many nodes with f ≤ f(G) )

•
• Time? Exponential
•
• Space? Keeps all nodes in memory
•
• Optimal? Yes
•



Admissible heuristics
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 
• h2(S) = ?
•



Admissible heuristics
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18



Relaxed problems
• A problem with fewer restrictions on the actions 

is called a relaxed problem
•
• The cost of an optimal solution to a relaxed 

problem is an admissible heuristic for the 
original problem

•
• If the rules of the 8-puzzle are relaxed so that a 

tile can move anywhere, then h1(n) gives the 
shortest solution

•
• If the rules are relaxed so that a tile can move to 

any adjacent square, then h2(n) gives the 
shortest solution



Local search algorithms
• In many optimization problems, the path to the 

goal is irrelevant; the goal state itself is the 
solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-

queens
• In such cases, we can use local search 

algorithms
• keep a single "current" state, try to improve it
• Example: N-Queens using Hill climbing 

algorithm



Example: n-queens

• Put n queens on an n × n board with no 
two queens on the same row, column, or 
diagonal

•



Hill-climbing search

• "Like climbing Everest in thick fog with 
amnesia"

•



Hill-climbing search
• iterative algorithm that starts with an arbitrary solution to a problem, then attempts 

to find a better solution by incrementally changing a single element of the solution. If 
the change produces a better solution, an incremental change is made to the new 
solution, repeating until no further improvements can be found.

• Simple, general idea:
– Start wherever
– Always choose the best neighbor
– If no neighbors have better scores than current, quit

• Problem: depending on initial state, can get stuck in local maxima
•



Hill climbing
• Application in the traveling salesman problem:

• It is easy to find an initial solution that visits all the cities but will be very poor 
compared to the optimal solution. The algorithm starts with such a solution and 
makes small improvements to it, such as switching the order in which two cities 
are visited. Eventually, a much shorter route is likely to be obtained.

• good for finding a local optimum (a good solution that lies relatively 
near the initial solution) 

• Not guaranteed to find the best possible solution (the global optimum) 
out of all possible solutions (the search space).

• Its relative simplicity makes it a popular first choice amongst 
optimizing algorithms

• more advanced algorithms such as simulated annealing or tabu
search may give better results, in some situations hill climbing works 
just as well

• can often produce a better result than other algorithms when time is 
limited



Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly 
or indirectly 

• h = 17 for the above state
•



Hill-climbing search: 8-queens problem

• A local minimum with h = 1
•



Simulated annealing search

• Idea: escape local maxima by allowing some 
"bad" moves but gradually decrease their 
frequency

•



Properties of simulated 
annealing search

• One can prove: If T decreases slowly enough, 
then simulated annealing search will find a 
global optimum with probability approaching 

• Widely used in VLSI layout, airline scheduling, 
etc

•



Tabu search
• A metaheuristic algorithm that can be used for solving 

combinatorial optimization problems, such as the 
traveling salesman problem (TSP). Tabu search uses a 
local or neighborhood search procedure to iteratively 
move from a solution x to a solution x' in the 
neighborhood of x, until some stopping criterion has 
been satisfied. To explore regions of the search space 
that would be left unexplored by the local search 
procedure 

• Tabu search modifies the neighborhood structure of 
each solution as the search progresses

• Example: Traveling salesman problem


