Materials

Ch 2 & 3 of Artificial Intelligence A Systems
Approach by Tim Jones
Chapters 3 and 4 of Artificial Intelligence a
Modern Approach by Russell and Norvig

Problem solving, search and control
strategies

What are problem solving, search and control strategles 7

& Problem solving is fundamental to many Al-based appllcations.

There are two bypes of problems.
The Problerms ke, compuotation of the sime of an angle or the squane
oot of & walue. Thes= can b= solwed through the wse of
deterministic procedure and the suocess s guaraniesd.
In the resl wordd, wery few problems lend themselees to
stralghtforwand solutions.
Maost real world problems can be solved only by searching for a sobutiom.
Al Is comcermned with these type of problems sodeing.

Froblem solving Is a process of gensrating solutions from obsensed data.
» problem Is characterized by a s=t of goals,
a ==t of objects, and
s set of operstions.

Thesa could be lll-defined and meay =vohie during problem soling.

Prolkdem space s an abstrec<t space.
A problemn space sncompasses all vald states that can be gensreted by
the mpplication of any combination of operaiors on BNy Ccombination of
phjects.
The problem space may conbain one or more solutions.

Sobution ks a combinatlon of operations and objects that achleve the goals.

& Search refers to the search for a solution In 8 problem space.

- Search proceeds wikth different types of s=arch conbrod sirategies.
The depth-frst ssovch and Greadbh-rst seorch are the bwo oormsmon
search strategies.

FeEneral Frobiem solving
i
Problem solving has been the key areas of concern for Artificial Int=lligence.

= Problem solving s 3 process of generating solutions from observed or
plven data. It Is however nob atweys possible (o use direct methods (e go
girectly from data to solution). Instesd, problem solwing often need o use

Imdirect or model -based methods.

= General Problem Solver {GPS) was a computer program created in 1557
by Skmon end Newell to build & unbsersal problem solver machine, GFE was
based on Simon and Mewell's theoreticed work on logic machines. GFS in
principde can solve any formalized symbolic problem, ke © theorems proof

and geometric problems and chess playing.

GEPS solved many simple problems such 8s the Towers of Hanol, that could

e sufficiently formalired, but GPS cowuld not sobee any real-world
probilems.
To bulld & system to scive a particular problem, we peed to

= D=fine the problem precisely - fnd Input situstions ss well as final

situations for scceptable solution o the probilem.

= Analyze the problem - find few important featunes that mey have impact

an the appropristensss of varous possible bechnigues for solwing the

probilem.
8 [zolate ard represent bEsk knowledge necessery to soive the problem

» Choose the best problem solving btechnilgue(s) and spply to the particular

prabilem.

GENERAL PROBLEM SOLVING

Profem Definiions -
& gmoblem is defined by s &laments amd their relabions.
To provide s formal descripton of & probdem; we meed bo do Tollowing:

a. Define a S[3lE 5pace that contains 24 the possible configurations of
thie redewvant abfects, Including som= impossible ones,

b. Specify one ar mor= skates, that desoibe possible shusticns, from
which the problem-solving process may start. Thess states are called
initial shates.

C. Specify one of more states that would be scceptable soiution to the

probiem. These states are called goal sfabes.,
d. Specify & set af MUUEes that describe the ACliDnNs (operators) evallable_

The prablemn can then be solved by using the MAEs, In combination with &n
appropriate controd strategy, o moyve through the profdem Space unkil a
path from an initial state o a goal 2@ s found.

This process |5 known &5 sesnch.

Seprch s fundamantal to the problem-solving process.
Search 5 a general mechanism that cen be used when more dired
meethiod is not known.

- Seprch prowides the framewark ko which more direct methods for

solving subparts of a problesm can be Emibedoed.

A very large number of AT problems are formulated as search problems.

Probem Space

A DrOVEeT SPACE Is represented by directed graph, whers D005
represent S8Arch siofe and _|:L:r.‘|5 represent the OEralirs applied bo

chamge he stale.

To simplify & search sigorthms, It s oft=n convendent o logically and
programmatically represent & problermn space as & ee. A& tres wsually
decreases the complexity of & search at & cosf. Here, the cost i du= bo
duplicefing somie nodes on the tree that were linked rumerous mes in the

graph; e.g9. node B and node D shawn in example below.

A tres iz & graph in which sny bwo vertices are connmected by exacty omne
path. Alternatively, any connected graph with no cycles s & tres.

Exarmpies
Eraph Trees

GENERAL PROBLEM SOLVING

Froblem Solving

Thie term Problem Sobving refates analysis im AL Problemn solving may
be charact=rized &s & Sys[EMAbc saarcl through & range of possible
actions to resch some predefined goal aor soiution. Problem-solving
methods are categorized as Special pUWpose and general pUIPose.

Specital-purpose method Is talior-mace for & particuler problem, often
exploits very specific festures of Ehe situation in which the problem is
embedded.

General-purpose method |s applicable to & wide variety of problems.
e gensral-purpose technigue vsed in Al Is "means-end analysis®. It s
a shtep-by-step, or incrementsl; reducdon of the difference bebwesn
current state and fnal goal.

Exampies 1 Tower of Hanol puzzie

For & Robot this might consist of PICKUPR, PUTDOWN, MOVEFORWARD,
HOVEBACK, MOVELEFT, and MOVERIGHT—untll the goal is nesched,

Purrles and Games have explicit rules - e.g., the Tower of Hano! puzzie.

{a) ()]
=== W
AT _—
Start Final

Tower of Hanol puzzie.

& This puzzie may Involves a set of nings of different sizes that can be
placed o three different pegs.
@ The puzrzie starts with the rings srrenged as shown in Fig. {a)
@& The goal of this puzzle i ko move them all 2 to Fig. (b}
¢ Comndition @ Ondy the top ring on 8 peg can be mowed, and IE may
onfy be placed on & srmaller ring, or on an empty peg.
In thiz Tower of Hanol puzzrie : Shkustions encounk=red while molving the
problem are described as S[AMES. The set of all possible configurations of
rings on the pegs is called problem space.

States

A stale s & repressEntation of elEments ot & ghven moment. & probeEm s
defined by Its Sements and their relations,

At each Instant of & problem, the slements have specific descriptors amd
relations; the CESCHPIONE k=l - how bo select elements 7

Amang all possible states, thers are bwo specal states called :

- Initiar state IS the start paint

- Final stabe |s the goal state

State Change: Successor Function

A SUrcessor FUnCion is nesded for state change.

The successor function moves one siste to snother state.
Sucoessor Function o
@ Is a desmiption of possible actions; a set of operators.

& Iz & transformation function on & state representstion, which conwerts
thiat state into amother stabe.

@ Defines a relathon of accessibility among stotes.

@ Represents the conditicns of applicability of & stste snd cormmesponding
trarsformation functiocn
State Space

& Shate SpACE s the setof all States reachable from the inftal state.
Definftions of terms

& A sizfe SpaCce forms a Qraph (or map] in which the NO0ES are states

mnd the 4705 between nodes are actions.

O In sime space; B pﬂ!.".‘ Is B seguence= of states connected by & sequence
of sctions.

@ The solution of a problemn iz part of the map formed by the stete coace.

GENERAL PROBLEM SOLVIN

Structure of a State Space
The Structwes of stabe spece are IF885 and glr.:ﬁ.hs.

- Tree s a hisrarchical structure ina grephical form; smd

Gragh i a non-hlerarchical strecure.

& Tree has only one= path to & given node;
l.e_, & tree has one and only one path from any poink to any other point.

& Graph consists of a2 ==t of nodes (vertices] and & set of edges (arcs).
Arcs estsblish relationships (connections} betessen the nodas;

l.e., & graph has several paths to 8 piven node.
& operators sre directed arcs betwesn nodes,
Search process explores bthe shafe space. In the worst case;, the s=snch

expiares 8l possible paths betwesn the ndblad state and the poal shate.

Probem Solution

[n the stale space, a solution s & ,D-d'.’l"l from the nitial stake to & goad
siate or somietime just & poal stade.

& A Solution cost function assigrs & numerc cost to esch path;

It also ghves the cost of applying the operators o the states.

@ A Solution guality s messured by thie path cost fumnction; and
An optimal soluticn hkas the bwest path cost among all solukions.

& The soluticn may b= any or optimal or all

£ The Importance oFf cost depends on the protlem and the type of

solution asked.

Froblem Description

A problem consists of the description off :
- current siale of the world,
- ACEIONS that can transform one state of the world into another,
- desired stafe of the world.

& Stabe space = defined explicitly or implicitly
A state space should desoribe everything that s nesded to sohe &
problem amnd nothing that s not readed bo the soive the problem.

@ Inftlsl state |z stort state

& Goal stabe s the condiions € has to fulfil
- A description of & desired stake of the world;
The descripbion may be complete or partial.

& Dperators ore to change state
- Dperabors do adiors that cen trensform one state inko anather,
- Dperabors consisk of © Preconddions and Instructons;
» Freconditions prowvide partisl description of the state of the worid
that must be true in order ko perform the action,
= Instructions tell on how o ceste next stake.

- Dperators should be &5 general as passible, to reduce their number.

< Elements of the domaln hes relevance to the problem
Knowiedge of the starting point.

© Problem solving Is finding solution
Finding an ordered seguence of operators that transform the current
[start] stafe info & goal state;

@ Restrictions are solution quality any, optimal, ar ail
Finding the shorfest sequence; or
Finding the least expensive seguence defining cost ; or
Finding eny s=quence as quickly as possible.

GENERAL PROBLEM SOLVING

Examples of Froblem Definftions

Example 1 1

A game of 8—-Puzzle

@ State space : configuretion of 8 - fles on the board
Initial state : amy configuraticn

9 Goal state @ tiles in & speciic order

@ Action : “blank moves”

. Condition: the mawe |s within the board

i Transforrmaticn: blank moves Lef, Right, Up, Dn

& Solution : optimal seguenos of operators

Examipie 2 1
A game of n-guesns puzrzie; n= 8

& Skate spasce : configurstions m = B —
gu=ens on the board with only one |
DuEen pEr row Snd codurmnn

¢ iInitial state : configuration without |
gueEens an the bosrd

& Goal state : configurstion with n = B |
gu=ens such that no guesn sttacks any |
péther

& Operators or actions © place & gueen on |
the Dosrd.

% Conditicn: the new gueen s not
attmcked by any other already
niaced

Transformation: place & new gues=n
In & particular sguare of the board

& Solution : one solution {oost is not considered)

Al: SEARCH AND CONTROL STRATEGIES

Word “Search” refers bo the search for a solution In a problem space.
Seanch proceeds with different types of "Search Control strateghes”.
A strategy is defined by picking the order in which the nodes expand.
The Search strategles are evaluated in the following dimensions:
Compietemess, Time comalexity, Space complexity, Optimaity.
fthe seanch relsted ferms are first explaines, Shen the ssanch sigorithms and b
simategies are Mustrated).

2.1 Search related terms

& Algorfthm’'s Performance and Complexiby

[deslly we want & Common Messure so that we can compare approsches in

arder to select the most sppropriate sigorthm for & ghven situstion.

< Performance of an algorithm depends on intemal and external faciors.
Internal fackors External Factors
% TEme required, to rum % Skoe of Input to the algorithm

+ Space {memory) required to run % Speed af the computer
Quallty of the compller

< Compéexity |5 a measure of the performance of an algorfthm.

It messures the intemal factors, usually In time than space.

Computational Complexity
A measure of resources in berms of Time and Space.

& If A is am pigorithm that sclves a deciksion problem §

then run ime of A is the rumiber of steps Baken on the Inpuk of kengith n.

o Time Complexity Tin} of a decision problem § is the run Bime of the
‘be=st’ mlgorithem & for T

& Space Complexfty S{n) of a decision problern f is the amouwnt of
memaory used by the best” siporithm & for T .

“Blg - 0" notation
The "Blg-0" Is theoretical measure of the execution of an algorithm,
usually indicak=s the fime or the memory neesded, given the problem
size m, which Is usually the number of items.
& Blg-0 notatlon
The Big-0 notation Is used to give an approximation to the run-time-
eMici=ncy of an algorithm ; the letter 0" is for crder of magnitude of

operations or space at run-time,

& The Big-0 of an Algorithm &
If an sigorithm A& requires time proportional to f{m), then the
algorithm A& ks said to be of order f{n), and it s cenoted as DIT(R}].

If algorithm A requires tme proportionsl to n®, then order of the
algorithm is said to be O{n").

If algorithrmn A requires time proporticonal bo n, then ocrder of the
algorithm is sadd to be SR}

Thie funicticen f{n] Is calied the algorthm's growth-rate function.

If an algorfthm has performance complexdty @(n); this means that the
run-time t should be directly proportional ton, 82 £ = n or & = kn

where k Is constant of proportionality.

Simllary, for algorthms having performance complexity O(legzin}h
Dflog K}, O{M log N}, DE!'} and so on.

< Example 1 :

1-D array, determine the Big-0 of an algorithm ;

Calculate the sum of the n elements in an inteper amay af0 n-1].
Line mo Instructions Mo of execution steps
fine 1 sum = 0 1
Binz 2 for {1=051< nj I++] n+1
fine 3 sum += afl] n
fine & prink sum 1
Tatal n+ 3

Far the polynomial (2%m + 3} the Big-O Is dominated by the 1st te=rm
as n while the number of elements in the arrey becomes very large.

Alzo in determining the Blg-0
Ignoring constants such as 2 and 3, the algarithm Is of the order n.
% So the Blg-0 of the algorithm is Ofm].

% In cther words the run-time of this algarthm increases roughly as

the size of the input data m , say &n array of sie 0.

Tree Structure

Tree s a way of organizing objects; related In a hilerarchical fashilon.

Tree is & tvpe of data structure where

each sdermant 1o atteched to one or more =lerments directly benesth .

- the connections between slements are called Sranches.

tres is often called fventes frees becauses IS roof 15 st the top.

- the elements that have no elerments below them are called feaves.

- @& BAnary free |s a spedal type; esch slement has bwo branches bedow it

@ Example
Tree depth Root
[1] Parent
1 Child
@ O

Leaves Goal Node

Flg. A slmple example anordered tree

9 Properties

]
E

Tree is a special case of a graph.

The topmost node In & tree s called the rood node; at oot node all
operations on the tres begin.

& mode has at rmeaosk one parend. The lopmost mode celled ook node
has no parents.

Each node has efther zem or more ol rodes below IE .

% The Modes at the botbom most level of the tree are called Jead

noges. The jeaf nodes do not have children.

T A node that has & child ks called the child's pavent nooe.

The deptn of 4 node 0 IS the l=ngth of the path from the roat to the
node; The rook node |s ab depth zero.

Search

Search Is the systemetic examination of states to And path from the
startfroot stet= bo the goal state.
- semrch wsually results from & lack of knowiledpe.
- semrch explores knowledge alternatives to arrive st the best snswer.
search algorithm owtput IS & sclution, b=, a path from the Initial state bo
& state that satisfles the goal best.

For general-purpose probem soiving @ “Ss=arch” Is an approach.
search desls with Ainding nodes hawing certain properties in a graph that
represents search space.
- semrchh methods explore the ssaemch space "intelligenty®;, evalusting
possiblities without investigating every single possitdlity.

Example 1 Search tres
The s=arch trees are multilevel indexes used to guide the sesrch for dats
mems, given some seanch criteria.

oot @ Mo0=

. Goal Nodes

The meanch sterts st roof and
Explores podes looking far
8 goal Aode, thet satisfles
certain conditions depending

an the problem.

For some problems, any goal

node, N or), |5 accepisbie;

For other problems, & may
be = minimum depth goal
node, say 3 which ks nesrest
to moot.

Fig. Tree Search.

' Search Algorithms :

Many traditional search algorfthms are used In &1 applications. For complex
problems, the traditional aigorthms are snabie to find the solutiom within
some practical time and space Bmiks. Consequently, many special technigues
pre developed, vsing heuristic functions .

The algorithms that use heuristic functions are called hewristic algorithms.
Heuristic algorithms are not realy intelligent; they sppesr to be nb=lligent
becsuse they achisve better performance.

Heuristic sigarithms are more sMcient becsuse they take sdwvantsge af
feedbsck from the dats ko direct the s=arch path.
Uninformed search alporithms or Brute-force alporithms seerch, through
the search space; all possibie candidates for the solution checking whether
a=ach candidate satisfies the problermn's statement.
Informed sesrch algorithms use heurstic functions, that are specific to the
protlem, apply them to guide the search through the search space ta try
to reduce the amount of Hime spent in searching.

A good heuristic can make an informed s=arch dramatically cut-perform any

uninformed seanch. For example; the Travellng Salesman Problem [TSP)

whene the goal Is to find a good sodution Instesd of Anding the best salwbion.

In TPS like problems, the sesrch procesds wsing current information about
thie problem bo predict which path iz doser to the goal and follow i, although
It doms not stways guarani=s Eo find the best possibie solution. Such
technigues help In Anding 4 solution within reasonabie tme and space.

Some prominent inteflig=nt s=arch algorithms are stated belaw.

1. Generate and Test Search 4. A" Saarch
2. Best-Tirst Search 5. Constralmt Search
3. Gresdy S=arch 6. Means-ends analysls

There sre more algarithms, sither an improvemant or combinations of these,

¥ Hizrarchical Representation of Ssarch Algorithms

A representation of most search algorthms s Mustrated below. It begins
with two byppes ol s=arch - Uininformeed amd Inforrmed.

Uninformed Seanch @ Also celled bddnd, exhavstve or brube-force search;
uses no informaticon abowt the problem to guide the search and therefore
may not be wery efficient.

Informeed Beanch @ Also celled hewnishc or infeWgend search; uses
information about the problem o guide the search; uswally guesses the
distance to s goal state and therefore efficient, but the sesrch may not be

always possible.

Search _AI orithms

Mo heurlstics

Friority
Qaeue: Bin)
Gradually Increas=
ed depth limit

ﬂﬂ} ll[ﬂ]"rl[l'l-:l ! i

Search Space

A set of all states | which cen be resched, oonstitute a search space

This Is cbteined by applying some combination of operators defining thelr
connectivity .

Example
Fimd route= from Start to Goal state.
Consider the vertices as city and the =dges as distances.

- Indtial State &
- Gosl EState (]
- Nodes represent clties

- Arcs represent distances

E¥haustive Search

Besides Forward and Backward chaiming expisined, thers are many other
search sirategies wsed in computetionsl intelligence. Among the most
commonly usesd approaches sre :

Breadbh-frel search (BFS)] and depih-Arst sesrch (OFS).

A search Is =5i0 to b= exheustive T the ssanch B guaranissd o geEnerste
all reschable states (outcomes) be=fore @ bermminates with fallure.

A graphical representstion of all possibie reschable stat=s and the paths by
which they may be resched |5 called decsion fmee.

Breadth-Tirst search {(BFS5) : A& Search strabtegy, in which the highest
layer of & dedsion trez s Sseanched compietely before proceeding too the
nExt layver 15 callied Bresdifh-Arst sesrch (BFS).
- Im this strategy, no viable solution |5 omitted and therefore guarsni=e that
captirmaal salution |5 fownd.
- This strategy Is often not feasible when the seanch space |5 lange.

Depth-first search {(DF5) ¢ A =earch strategy that esstends the current
path as fer as possible before backirscking to the last cholce paoint and Erying
the next altermative path is called Depth-first s=anch (DFS).
- Thils strategy dos=s not guarant=e that the opbimal salution has been fownd.
- In ‘this strategy,. search mesches s setsfsctory solution mare rapedfy Ehan
breadth first, an advantage when the search space & lange.

The Bresdth-first ==srch (BFS) and cepth-frst search [(DFS) are the fourdstion
for all ather s=arch technilgues.

Tree search algorithms

e Basic idea:

— offline, simulated exploration of state space by generating
successors of already-explored states (a.k.a.~expanding
states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

14 Jan 2004 CS 3243 - Blind Search

11

Tree search example

14 Jan 2004

Tree search example

CS 3243 - Blind Search

13

14 Jan 2004

Tree search example

imiscara

Himnicu Vilcsa

CS 3243 - Blind Search

14

Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
fringe +— INSERT ALL(EXPAND(node, problem), fringe)

function EXrPAND(node, problem) returns a set of nodes

successors<— the empty set

for each action, result in SUCCESSOR-F'N[problem|(STATE[node]) do
$<—a new NODE
PARENT-NODE[s] < node; ACTION[s| «— action; STATE[s| + result
PATH-COST[$] - PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] — DEPTH[nOde] + 1
add s to successors

return successors

14 Jan 2004 CS 3243 - Blind Search

15

Implementation: states vs. nodes

o Astate is a (representation of) a physical configuration

* Anode is a data structure constituting part of a search tree
Includes state, parent node, action, path cost g(x), depth

State 5 4

6 1

8

7 3

e TheEXp._..._ s

2

~ sale

parent, action
A

Node depth = 6

g=6

o _.n the various

fields and usirig_'fhé's'u'ééessdi*lih of the problem to create
|

the correspon

14 Jan 2004

ng states.

CS 3243 - Blind Search 16

Search strategies

» Asearch strategy is defined by picking the order of node
expansion

« Strategies are evaluated along the following dimensions:
— completeness: does it always find a solution if one exists?
— time complexity: number of nodes generated
— space complexity: maximum number of nodes in memory
— optimality: does it always find a least-cost solution?

« Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximum depth of the state space (may be <o)

Uninformed search strategies

Uninformed search strategies use only the information available in the
problem definition

Breadth-first search
Depth-first search
Depth-limited search

Iterative deepening search

Breadth-first search

« Expand shallowest unexpanded node

e Implementation:

— fringe is a FIFO queue, I.e., new successors go at
end

N >@

Breadth-first search

« Expand shallowest unexpanded node

e Implementation:

— fringe is a FIFO queue, I.e., new successors go at
end

>(E ©

14 Jan 2004 CS 3243 - Blind Search

20

Breadth-first search

« Expand shallowest unexpanded node

e Implementation:
— fringe is a FIFO gqueue,.e., new successors go at

end ﬂ

14 Jan 2004

21

Breadth-first search

« Expand shallowest unexpanded node

e Implementation:
— fringe is a FIFO gqueue,l.e., new successors go at

end 'B

PO © © ©

14 Jan 2004 CS 3243 - Blind Search 22

Properties of breadth-first search

o Complete? Yes (if b is finite)

o Time? 1+b+bh2+b3+... +bd + b(bd-1) = O(b9*1)

 Space? O(bd*1) (keeps every node in memory)

o Optimal? Yes (if cost = 1 per step)

» Space is the bigger problem (more than time)

14 Jan 2004 CS 3243 - Blind Search

23

Depth-first search

* Expand deepest unexpanded node

e Implementation:
— fringe = LIFO queue, i.ek@'successors at front

14 Jan 2004 CS 3243 - Blind Search

24

Depth-first search

o Expand deepest unexpanded node

e Implementation:

— fringe (A]
(5] o

14 Jan 2004 CS 3243 - Blind Search

25

Depth-first search

o Expand deepest unexpanded node

e Implementation:
— fringe = LIFO queue, i.e.

 successors at front

14 Jan 2004 CS 3243 - Blind Search

26

Depth-first search

o Expand deepest unexpanded node

e Implementation:
— fringe = LIFO queue, i.e.,

uccessors at front

14 Jan 2004 CS 3243 - Blind Search

27

Depth-first search

o Expand deepest unexpanded node

e Implementation:
— fringe = LIFO queue, i.e. ¥k

Isuccessors at front

14 Jan 2004 CS 3243 - Blind Search

28

Depth-first search

o Expand deepest unexpanded node

e Implementation:
— fringe

14 Jan 2004 CS 3243 - Blind Search

29

Depth-first search

o Expand deepest unexpanded node

e Implementation:
— fringe

14 Jan 2004 CS 3243 - Blind Search

30

Depth-first search

o Expand deepest unexpanded node

e Implementation:
— fringe

14 Jan 2004 CS 3243 - Blind Search

31

Depth-first search

* Expand deepest unexpanded node

e Implementation:
— fringe

14 Jan 2004 CS 3243 - Blind Search

32

Depth-first search

* Expand deepest unexpanded node

e Implementation:

— fringe (A

L
() G

14 Jan 2004 CS 3243 - Blind Search

33

Depth-first search

o Expand deepest unexpanded node

e Implementation:
— fringe

14 Jan 2004 CS 3243 - Blind Search

34

Depth-first search

o Expand deepest unexpanded node

e Implementation:
— fringe

14 Jan 2004 CS 3243 - Blind Search

35

Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces with loops
— Modify to avoid repeated states along path

—> complete in finite spaces

Time? O(b™): terrible if m is much larger than d
— but if solutions are dense, may be much faster than breadth-first

Space? O(bm), i.e., linear space!

Optimal? No

14 Jan 2004 CS 3243 - Blind Search 36

Depth — Limited search

Alleviating the embarrassing failure of depth-first search in
Infinite state spaces by supplying depth-first search with a
predetermined depth-limit of |.

Nodes at depth | are treated as if they have no successors.

Unfortunately, it also introduces an additional source of
Incompleteness if we choose I<d

It will also be non-optimal if we choose I>d

ts time complexity is O(b')and its space complexity is O(bl).
Depth-first search can be viewed as a special case of depth-
limited search with /=ce.

depth-limited search has two modes of failure:

» standard failure - no solution.
o cutoff failure - no solution within the depth limit

Depth-limited search

= depth-first search with depth limit |,
l.e., nodes at depth | have no successors

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE- DLS(node, problem, limit) returns soln/fail / cutoff
cutoff-occurred? « false
if GOAL-TEST[problem](STATE[node]) then return SoLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result + RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? + true
else if result + faidure then return result
if cutoff-occurred? then return cutoff else return failure

Iterative deepening search

general strategy, often used in combination with depth-first tree search, that finds
the best depth limit. It does this by gradually increasing the limit - first O, then 1,
then 2, and so on - until a goal is found. This will occure when the depth

reaches d, the depth of the shallowest goal node. The algorithm is shown in Figure
DFS-15:

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth< 0 to oo do
result <— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return resuli

Combines the benefits of depth-first search and breadth-first search.
Memory requirements are: O(bd)

N(IterativeDeepeningSearch)=(d)b + (d-1)b? + ... + (1)b?

This gives a time complexity of O(bY)

Iterative deepening search | =0

*@ ®

Lim

14 Jan 2004

it=1

Iterative deepening search | =1

° o« o e e

CS 3243 - Blind Search

41

Iterative deepening search | =2

Limt=2 »@® ® =
@ © o, @ @) G
d ® 86

S S S SN

14 Jan 2004 CS 3243 - Blind Search

42

Limit=3

Iterative deepening search | =3

@

14 Jan 2004

CS 3243 - Blind Search

43

Iterative deepening search

Number of nodes generated in a depth-limited search to depth d with
branching factor b:
NDLS =bO+bl+bh2+ + bd-2 + bd-l + bd

Number of nodes %enerated In an iterative deepening search to depth d
with branching factor b:

Nips = (d+1)b0 +d b + (d-1)b™2 + ... + 3bd2 +2bd-1 + 1pd
Forb=10,d=5,
Nps=1+10+ 100+ 1,000 + 10,000 + 100,000 =111,111
Nps =6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

Properties of iterative deepening search

o Complete? Yes

o Time? (d+1)b0 + d bt + (d-1)b2 + ... + bd = O(bY)

e Space? O(bd)

e Optimal? Yes, If step cost =1

14 Jan 2004 CS 3243 - Blind Search 45

Ssummary of algorithms

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time oY) o€y owm) O(b) O(b?)
Space OB+t oI /)y O(bm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

14 Jan 2004

CS 3243 - Blind Search

46

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node +— REMOVE- FRONT(fringe)
if GOAL-TEST|[problem|(STATE[node]) then return SOLUTION(node)
if STATE[node| is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

14 Jan 2004 CS 3243 - Blind Search

47

Summary

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

