
THE REPRESENTATION OF KNOWLEDGE

Table of Content

 Introduction

 Semantic Networks

 Decision Tables

 Decision Trees

 Frames

 Production Rules

 Logic

 Propositional Logic

 Predicate Calculus

Introduction

 Knowledge in an expert system is of little value without

a way to organize and load into a computer

 The know-how to program a computer to mimic the

thought processes of an expert through an appropriate

representation scheme is called knowledge

representation

 It involves knowledge of a shell or a programming

language that will represent the expert knowledge

Introduction

 A number of schemes have been developed over the

years that share 2 common characteristics:

a. They contain facts that can be used in reasoning through

shell inference engine

b. They can be programmed with existing computer

languages

Introduction

 There are generally 2 types of knowledge

representations schemes:

a. Analysis representation

 Support knowledge acquisition during scope

establishment and initial knowledge gathering

 Most techniques are pictorial such as semantic networks,

decision trees and tables

b. Coding representation

 The working code of the ES either in the form of frames

or production rules

Introduction

Knowledge

Representation

Analysis

Representation

Coding

Representation

Inference

Frames

Production rules

Semantic networks

Decision tables

Decision trees

Selected Knowledge Representation

Schemes

Semantic networks

 Semantic networks is the most general representation scheme, and
also one of the oldest in AI [Harmon85, Castillo91].

 Basically graphical representation of knowledge that show
hierarchical relationships between objects.

 Made up of a network of nodes and arc.

 The nodes represent objects and the arc the relationships between
objects.

Semantic networks
 Example:

License

Seal

Examination

Air

rescue

Emergency

landing

procedures

Olesek

Insignia

Shirt

sleeve

Two

Male

Harding

Person

Apparel

Uniform

Black

Cap

has-a

certifies

has-a

in-a in-an

has-

an

is-on

is-a

number-

of
has-a

is-a

race-is

is-a

wears

is-a

is-an

INHERITANCE

Semantic networks

 Nodes represent the objects, concepts, or events in the

world.

 Names of the arcs

 correspond to names of relations

 indicate which concepts or objects are linked by the

relations.

Semantic networks

 The 2 common arcs used are:

 IS-A is used to show class relationship.

 HAS-A is used to identify characteristics or attributes

of the object nodes

 other arcs are used for definitional purpose only

Decision Tables

 Organized in a spreadsheet format, using columns and

rows

 The table divided into two parts:

 A list of attributes is developed and for each attribute all

possible values are listed

 A list of possible conclusions. The different configurations of

attributes are match against the conclusion.

 Knowledge for the table is collected in KA sessions

Decision Tables

 Decision Table for Gift Problem

Decision Factors Result

Money Age Gift

Much Adult Car

Much Child Computer

Little Adult Toaster

Little Childs Calculator

Decision Trees

 A hierarchical arranged semantic network and is

closely related to a decision table

 It is composed of nodes representing goals and links

representing decisions

 Rules can be extracted from the decision tree, that can

be executed by computer program

 A major advantage can simplify knowledge acquisition

process

Decision Trees

 Decision tree for electrical system diagnosis

Terminals

Battery Voltage

Distributor Charger

Not

Loose

Loos

e

Tighten Terminals

<12 >12

OK OK Bad Bad

Check

Starter

Replace

Distributor

Replace

Charger

Replace

Battery

Frames

 A frame is a data structure for representing common

concepts and situations (stereotype knowledge).

 Like semantic nets, frames can be organized in a

hierarchy with general concepts near the top and specific

concepts placed at the lower levels.

Frames

 Unlike semantic nets, each frame or node in this

hierarchy can be very rich in supplementary information,

thus eliminating many of the nodes that are required in a

semantic network.

 Values that describe one object are group together into

single unit.

Frames

 Values that describe one object are group together into

single unit.

 Knowledge partition into slots.

 Each slot describe:

 • declarative knowledge (colour of a car)

 • procedural knowledge (activate a certain rule if the

 value exceed certain value)

Frames

 Frames describe an object in great detail. The detail in

form of slots that describe the various and characteristic

of the object or situation.

Frames

 Basic frame design

Frame Name:

Class:

Properties:

Object1

Object2

*** ***

*** ***

Value2 Property2

Value1 Property1

Frames

Class frame

 Represent the general characteristic of some set of

common

 objects.

 For example, class frames such as cars, boats, birds.

 Define those properties that are common to all the object

 within the class, and possibly default property values.

 2 types of properties:

 static: describe an object feature whose value doesn‟t change

 dynamic: is a feature whose value is likely to change during

 operation of the system

Frames

 Class Frame

Frame Name:

Properties:

Bird

Try Flies

2 No Wings

Worms Eats

Unknown Color

Unknown Hungry

Unknown Activity

Frames

Instance Frame

 Use to describe a specific instance (sub-class or examples)

 of a class frame.

 This frames inherits both properties and property values

 from class.

 The property values can be change to tailor the object

 represented in instance frame.

 Can create as many instances of the class and immediately

 inherits the class information.

 Speed up system coding.

Frames

 Instance frame

Frame Name:

Class:

Properties:

Tweety

Bird

False Flies

1 No Wings

Worms Eats

Yellow Color

Unknown Hungry

Unknown

Activity

Lives Cage

Frames

Frame Inheritance

 From example “Tweety” an instance of bird class.

 Like most bird Tweety eat worms, but has only one wing

 and cannot fly.

 Can allow an instance to accept the class default values

 or provide values unique to the instance.

 Can also provide unique properties. e.g. if Tweety live in

 a cage.

Frames

Frame Inheritance

 Inheriting Behaviour

 Beside inheriting descriptive information from its class, an

 instance also inherits it behaviour.

 Need to include a procedure (method) within class frame

 that define some action the frame performs.

Frames

Facets

 Facets (subslots) describe some knowledge or

 procedures about the attribute in the slot.

 Can control property values

 Can be used to direct reasoning process.

 May takes many form such as:

 a constraint value; for example, the slot 'age', would be constraint

age has to be an integer between 0 and 120

 a default value; for example, unless there is contrary evidence it

is assumes that all people like sambal belacan

Frames

Facets (continue…)

 May takes many form such as: (cont..)

 If-ADDED Facet: Executes when new information is placed in the

slots.

 If-REMOVED Facet: Executes when information is deleted from

the slot.

 If-NEEDED Facet: Executes when new information is needed

from the slot, but the slot is empty.

 If-CHANGED Facet: Executes when information changes.

Frames

If-NEEDED Facet

 Need to define a procedure or method that executes

 whenever a property value is needed.

 Example:

 Consider the property 'Flies' in Tweety frame of previous slide

(slide 23). Assume this property is unknown and you want the

system to determine if tweety can fly. Birds can fly if they have 2

wings.

Frames

If-NEEDED Facet

 A general rule:

 IF Tweety has less than 2 wings

 THEN Tweety can't fly

 IF Tweety has two wings

 THEN Tweety can fly

 or more specifically:

 IF Tweety:No_wings < 2

 THEN Tweety:Flies = False

 IF Tweety:No_wings = 2

 THEN Tweety:Flies = True

Frames

If-CHANGED Facet

 Perform some action whenever its value changes.

 A general rule:

 IF a bird is hungry

 THEN the bird eat

 or more specifically:

 IF Bird:Hungry = True

 THEN Bird: Activity = Eating

Frames

 Frame World of Birds

Birds

Robins Canaries Sparrows

Bird 5 Bird 4 Bird 3 Bird 2 Bird 1

Exercise on Frames

 Prepare a frame of an automobile that you know,

show 2 level of hierarchies. Fill some property

and property values. (static and dynamic)

Production Rules

 Form of procedural knowledge that describe how to
solve a problem.

 The procedural and/or factual knowledge is
represented as rules, called productions, in the form of
condition-action pairs.

 Is stated as follows:
 "IF this condition occurs, THEN do this action; or this result (or

conclusion or consequence) will occur.

Production Rules

 Examples

 IF flammable liquid was spilled,

 THEN call the fire department.

 IF the pH of the spill is less than 6,

 THEN the spill material is an acid.

 IF the spill material is an acid,

 and the spill smells like vinegar,

 THEN the spill material is acetic acid.

Production Rules

 When the IF portion of a rule is satisfied by the facts,
the action specified by the THEN is performed.

 When this happens the rule is said to "fire" or
"execute".

Types of Rules

 Relationship

 IF The battery is dead

 THEN The car will not start

 Recommendation

 IF The car will not start

 THEN take a cab

 Directive

 IF the car will not start

 AND the fuel is okay

 THEN check out the electrical system

Types of Rules

 Strategy

 IF The car will not start

 THEN first check out the fuel system then check

 out electrical system

 Heuristic

 IF the car will not start

 AND The car is a 1957 Ford

 THEN check the float

Types of Rules

 Uncertain Rules

 IF inflation is high

 THEN Almost certainly interest rates are high

 Can assign Certainty Factors:

 IF inflation is high

 THEN interest are high CF=0.8

Types of Rules

 Meta-Rules

 A rule that describe how other rules should be used.

 IF the car will not start

 AND the electrical system is operating normally

 THEN use rules concerning the fuel system

Rules Set

 Expert formed several sets of rules to a given problem through

experience

Car Problem

Fuel System Electrical System

Alternator Distributor Carburetor Fuel Line

Float Battery

Advantages of Rules

 Rules are easy to understand

 Inference and explanation are easy to derive

 Modifications and maintenance are relatively easy

 Uncertainty is easily combined with rules

 Each rule is usually independent of all others

Limitation of Rules

 Complex knowledge requires thousand of rules:

problems in using and maintaining it

 Builders like rules rather than looking for more

appropriate representations

 System with many rules may have a search limitation in

the control program: difficulty in evaluating and making

inferences

Exercise on Rules

 Try to crank the starter. If it is dead or cranks slowly, turn on the
headlights. If the headlights are bright (or dim only slightly), the
trouble is either in the starter itself, the solenoid, or in the wiring. To
find the trouble, short the two large solenoid terminals together (not
to ground). If the starter cranks normally, the problem is in the wiring
or in the solenoid; check them up to the ignition switch. If the starter
does not work normally, check the bushings (see section 7-3 of the
manual for instructions). If the bushings are good send the starter to
the test station or replace it. If the headlights are out or very dim,
check the battery (see section 7-4 for instructions). If the battery and
connecting wires are not at fault, turn the headlights on and try to
crank the starter. If the lights dim drastically, it is probably because
the starter is shorted to the ground. Have the starter tested or
replace it. (Based on Carrice et al. [5]).

Logic

 Oldest form of knowledge representation in a computer is logic

 Logic is concerned with the truthfulness of a chain of
statements.

 An argument is true if and only if, when all assumptions are
true, then all conclusions are also true.

 2 kinds of logic:

 Propositional Logic

 Predicate Calculus

 Both use symbols to represent knowledge and operators
applied to the symbols to produce logical reasoning

Propositional Logic (PL)

 Propositional logic represents and reasons with
propositions.

 P.L. assigns symbolic variable to a proposition
such as
 A = The car will start

 In. P. L. if we are concern with the truth of the
statement, we will check the truth of A.

Propositional Logic (PL)

Operators Symbol

AND , &, 

OR , , 

NOT , 

IMPLIES , 

EQUIVALEN

T



Propositional Logic (PL)

 Propositions that are linked together with connectives, such as AND,
OR, NOT, IMPLIES, and EQUIVALENT, are called compound
statements.

 Example:

 IF The Students Work Hard  A

 AND Always come to lectures  B

 AND Do all their homework's  C

 THEN they will get an A  D

 Using the symbols: A  B  C -> D

 Propositional logic is concerned with the truthfulness of compound
statements, depending on the connectives.

Propositional Logic (PL)

A B A and B A or B Not A A  B

F F F F T T

F T F T T F

T F F T F F

T T T T F T

Truth Table

Propositional Logic (PL)

 Implies Operator: C = A  B

 For implication C, if A is true, then B is implied to be true

 The implies return a F when A is TRUE and B is FALSE

Otherwise it return a TRUE.

A B C

F F T

F T T

T F F

T T T

Propositional Logic (PL)

 Example to illustrate Implies

 IF The battery is dead (A)

 THEN The car won‟t start (B)

Propositional Logic (PL)

Idempotent Laws A  B  A  B

A  A  F

A  A  T

Commutative

Laws

A  B  B  A

A  B  B  A

Distributive Laws A  (B  C)  (A  B)  (A  C)

A  (B  C)  (A  B)  (A  C)

Associative Laws A  (B  C)  (A  B)  C

A  (B  C)  (A  B)  C

Absorptive Laws A  (A  B)  A

A  (A  B)  A

DeMorgan‟s

Laws

(A  B)  A  B

(A  B)  A  B

EQUIVALENCE

Propositional Logic (PL)

 Used to transform complex statement into simpler

statement and equivalent.

 Example:

 (A  B)  B

 (A  B)  B DeMorgan‟s Laws

  A  (B  B) Associative Law

  A  T Idempotent Law

 T Identity Law

Propositional Logic (PL)

 P.L. offers techniques for capturing facts or rules in

symbolic form and then operates on them through use of

logical operators.

 PL provide method of managing statements that are

either TRUE or FALSE.

 Prolog is based on PC

Predicate Calculus (PC)

 Some P.L. weakness:

1. Limited ability to express knowledge and lose much

of their meanings.

 The Pacific Ocean contains water.

 Florida is a state within the USA.

 Only assigning true value without making any

 statement about „oceanhood‟ or „statehood‟.

Predicate Calculus (PC)

 Some P.L. weakness:

 2. Not all statements can be represented.

 All men are mortals.

 Some dogs like cats.

 Thus, need a more general form of logic

capable of representing the details.

Predicate Calculus (PC)

 Enhances processing by allowing the use of variables

and functions.

 Use symbols that represent

 • constants

 • predicates

 • variables

 • functions

 Operate on these symbols using PL operators.

Predicate Calculus (PC)

 Constant

 Specific objects or properties about a problem.

 Begin with lower case.

 Example: ahmad, elephant and temperature

 ahmad represent object Ahmad. Can also use A or X

instead of Ahmad.

Predicate Calculus (PC)

 Predicates

 Divide proposition into 2 parts:

 predicate: assertion about object

 argument: represent the object

 Example: To represent Azizi teach TN6023,

 teach (azizi, tn6023)

 teach is a predicate, denoting relationship between

arguments. The 1st letter must be in lower case.

Predicate Calculus (PC)

 Variables

 Represent general classes of objects or properties

 Written as symbols beginning with upper case.

 To capture the proposition Azizi teach TN6023, we write:

 teach (X,Y)

 X = Azizi and Y = TN6023

Predicate Calculus (PC)

 Functions

 Permits symbol to be used to represent function.

 A function denotes a mapping from entities of a set to a

unique element of another set.

 father(azizi) = zakaria mother(azizi) = zaharah.

 Can be also used within predicates. For example:

 husband (father(azizi), mother(azizi)) =

husband(zakaria,zaharah)

Predicate Calculus (PC)

 Operations

 PC uses the same operators found in P.L.

 Proposition: John likes Mary likes(john,mary)

 Bob likes Mary likes(bob,mary)

 2 persons like Mary. To account for jealousy:

 likes (X,Y) AND likes(Z,Y) implies NOT likes (X,Z)

 or

 likes (X,Y)  likes (Z,Y)  likes(X,Z)

Predicate Calculus (PC)

 P.C. introduce 2 symbols called variable

quantifiers.

1.  universal quantifier: for all.

2.  existential quantifier: there exist

Predicate Calculus (PC)

  Indicates the expression is TRUE for all values of

designated variable.

 Example:

 X likes (X,mary)

 means for all values of X, the statement is true,

everybody likes Mary

Predicate Calculus (PC)

  indicates the expression is TRUE for some values of

the variable; at least one value exist that makes the

statement true:

 X likes (X,mary)

Predicate Calculus (PC)

 Parentheses are used to indicate the scope of

quantification

 X (likes(X,mary)  nice(mary)  nice (X))

 determines all instances of X who like Mary and if

Mary is nice, then it is implied that those who like

Mary are also nice.

Exercise

 Beberapa orang anak Pak Dolah berjaya

melanjutkan pelajaran ke seberang laut

manakala yang selebihnya melanjutkan

pelajaran di dalam negeri

 Semua burung laut suka makan ikan.

 Terdapat juga spesis burung yang tidak boleh

terbang.

 Jika esok tidak hujan, Ali akan pergi ke

Pasaraya.

Exercise

 Ada sesetengah orang suka makan durian.

 Kalau kaca menjadi intan, kayalah penjual

botol.

 Hanya jauhari mengenal manikam.

 Kalau ada sumur diladang, boleh saya

menumpang mandi, kalau ada umur panjang,

boleh kita berjumpa lagi.

Reasoning with logic

 PC can provide reasoning capability to intelligent

system

 Reasoning requires the ability to infer conclusions from

available facts.

 One simple form of inference is modus ponen:

 IF A is true

 AND A  B is true

 THEN B is true

Reasoning with logic

 Robot Control Example

 The function of the robot is move a specified block to

some specified location

Table

A

D

E B

C

Reasoning with logic

 Robot Control Example

 Description of the block world using PC using the

following logical assertions:

1. cube(a), cube(b), cube(d), pyramid(c), sphere(e),

hand(hand), table (table1)

2. on(a,table1), on(b,table1), on(d,a), on(c,b)

3. holding(hand,nothing)

Reasoning with logic

 Robot Control Example

 The goal might be to put some block on other block, for example

put block b onto block a:

put_on(b,a)

 To accomplish this the robot need to obtain block b and make

certain that block a is clear:

 hand_holding(b)  clear(a)  put_on(b,a)

 To move any block, in variable form:

 X Y (hand_holding(X)  clear(Y)  put_on(X,Y))

 where X is the block to be move and Y is the target block

Reasoning with logic

 Robot Control Example

 One of the robot task when instructed to pick up and

move some blocks is to determine if it is clear.

 If not clear, need to remove any item on the block:

 X (¬Y on(Y,X)  clear(X))

For all X, X is clear if there does not exist a Y such

that Y is on X, would produce the following assertions:

 clear(c), clear(d)

Multiple Knowledge Representation

 No single knowledge representation method is ideally

suited by itself for all tasks.

 Some recent expert system shells use two or more

knowledge representation schemes.

 A rather successful combination of knowledge

representation method is production rules and frames.

Multiple Knowledge Representation

 By themselves, production rules do not provide a totally

effective representation facility for many expert system

applications.

 Their expressive power is inadequate:

 for defining terms

 for describing domain objects and static relationships among

objects.

Multiple Knowledge Representation

 Their major inadequacies are effectively handled by

frames.

 Frames provide:

 a rich structural language for describing the objects referred to in

the rules

 the partitioning, indexing and organising a system's production

rules.

 Knowledge Representation

Scheme Advantages Disadvantages

Production Rules simple syntax

easy to understand

simple interpreter

highly modular

flexible (easy to add

or modify)

hard to follow hierarchy

inefficient for large

systems

not all knowledge can be

expressed as rules

poor at representing

structure descriptive

knowledge

Semantic

Networks

easy to follow

hierarchy easy to

trace association

flexible

meaning attached to

nodes might be ambiguous

exception handling is

difficult

Knowledge Representation

Scheme Advantages Disadvantages

Frames expressive power

easy to setup slots for

new properties and

relations

easy to create

specialised procedures

easy to include default

information and detect

missing values

difficult to Program

difficult for inference

lack of software

Formal Logic facts asserted

independently of use

assurance that all and

only valid consequences

are asserted (precision)

Completeness

separation of representation

and processing

inefficient with large data sets

very slow with large

knowledge base

